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ide mass fingerprint data. We simulate 
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e and compute the distribution of scores 
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he database. We conclude that, given the 
oise of the data, the best method for 
e matching is using one scoring scheme 
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I.  INTRODUCTION 

ication using mass spectroscopy (MS) is 
hnology for proteomics (characterizing 
enome scale). This technology is now 
le in studies of biological systems at the 
uring the post-genomic era [1], with 

ns, including functional annotation of 
n of genes associated with a pathway or a 
tion of protein interactions, molecular 

e regulation. The general approach for 
ion is through matching the features 
ass spectra of peptides against a protein 

 [2]. It involves protein digestion using a 
hich cleaves with high specificity at the 
of lysine and arginine residues, 
separation, followed by peptide mass 

F) [3] or tandem mass (MS/MS) 
ysis [4]. PMF uses intact masses of 
or protein identification whereas MS/MS 
 fragments produced by collision-induced 
ared to MS/MS, PMF is more economic 

ugh it may be relatively less accurate for 
on.  

l identification of peptides using PMF 
eaks depends on various features, such as 

the type of digestion used for the preparation of gel samples, 
calculation of mass-to-charge ratio of the peptides, and 
matching protein sequences using peptides. The basic idea 
of the computational methods is first match the MS spectral 
peak with possible peptides theoretically digested from 
proteins in the search database, and then the proteins in the 
search database with a number of peptide hits are considered 
as likely candidates from the experimental sample. Several 
tools have been developed for PMF, among which 
ProteinProspector [5] and Mascot (Matrix Science Inc., 
http://www.matrixscience.com/) are the most popular.  
However, existing analysis tools often give too many 
matches for a given biological sample and provide no 
confidence assessment for choosing the best identification of 
peptides or proteins [5-7]. They assume that the target 
protein is in the search database and use the best hit from the 
raw score ranking as the prospective target. This may lead to 
false positive results since the top hit may not be the query 
protein. In particular, the raw scores are not normalized 
based on the protein length, the number of redundant hits for 
a spectral peak in the search database, etc. The ranking 
based on raw scores may be misleading. On the other hand, 
some peptides may be missed due to the noise of the PMF 
data, and this will cause false negative prediction, i.e., the 
correct protein was not ranked among top hits selected by 
computational methods. Given the potential inaccurate data 
analysis, it is very important to develop a confidence 
assessment for the PMF data analysis results (1) to get an 
idea to what extent a user can trust the protein identification 
result and (2) to re-rank the protein hits based on the 
confidence assessment instead of raw scores. Such a 
capacity may significantly improve the computational 
analysis of PMF data. 

*Correspondence: xudong@missouri.edu 

 
In this paper, we describe a novel PMF data analysis 

method with a statistical assessment approach. To our 
knowledge, this is the first computational method that gives 
a comprehensive statistical assessment for PMF data 
analysis.  
      

II.   DATASETS 
 
The PMF application data used for testing were obtained 
from MU Proteomics Center. The protein samples were 
digested using modified porcine trypsin (Promega, Madison, 
WI). The mass/charge (m/z) ions were obtained from a 
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Voyager DE-Pro MALDI-TOF Mass Spectrometry 
workstation (Applied Biosystem, Foster City, CA). The 
monoisotopic m/z values and associated intensities were 
extracted, which are the input data for our approach. The 
SWISS-PROT database [8] was utilized as the query 
database. 
 

 III.  METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Fig. 1. Flowchart of the algorithm.  
 
Figure 1 describes the workflow of our algorithm. The 
proteins in the search database are preprocessed into 
theoretical peptides with cleavages from a defined enzyme 
digestion as the constraint. For a set of mass/intensity 
reading values from PMF spectra, we utilized the ratio (|tm 
� Mp|)/Mp to determine whether the target peptide is a 
candidate, where Mp is the observed mass from the PMF 
spectra and tm is the mass of a theoretical peptide. If (|tm � 
Mp|)/MP ≤ 10-4, the target peptide will be picked as a 

candidate peptide. The hit score S, which is a raw score, for 
a protein j will be calculated using the following equation: 

  S = ][)( )1/(*/ PFTP
i

ditmiMpInt i +∑ +− �  (1) 

where Inti is the intensity of the query peptide i, Mpi is the 
molecular weight for the query peptide i, tmj is the 
molecular weight for the theoretical peptide in the database 
that is within the threshold, and d is a constant to be 
optimized. TP represents True Positives for peptides hits in 
query protein (number of peaks in the identified proteins) 
while FP False Positives (number of peaks not in the 
identified proteins). The higher this score, the higher 
possibility to be the match.  

Start 

Read input mass 
and intensity

 
 To evaluate the statistical significance of identified 
protein, we treat all of the proteins in the database as the 
statistical background. The Q-score1 is defined as the ratio 
between the number of residues with peptide matches and 
the protein length. The Q-score was normalized by the ratio 
of the total number of residues with peptide matches in the 
database vs. the total number of residues in the database: 

Read a protein 
sequence from database 

Compare the mass of peptides derived from in silico 
digestion on the protein in the database with input mass to 

find matching peptides with relative tolerance of 10-4

 

  Q-score1 =  
L
N

L
N

i

i ����.������.��.(2) 
Calculate score using  (1) 

 Create a list of top 10 
matches based on (1) where Ni denotes the number of residues in the peptides 

matched for protein i in the database, Li the length of the 
protein i in the database, N the total number of residues in 
the peptides matched in the entire database, and L the sum 
of residues for all of the proteins in the database.  
 
 The histogram of transformed Q-score for query 
proteins will be plotted and fitted as a Gaussian distribution 
with observed mean µ and standard deviation σ. The 
proteins in the database with Q-score larger than (µ+2σ) 
will be treated as significant protein hits. The protein hits are 
ranked by the generated probability.  
 
 

IV.  RESULTS 
 

To test our algorithm, we also applied our algorithm for 
the PMF data generated for several known proteins by the 
Proteomics Center at the University of Missouri.  

 
Table 1 is the prediction for sample 1, where the target 

protein was known to be horse myoglobin (P02188 Swiss 
Prot Accession Number). For the horse myoglobin, the top 

hit has a score S of 201, and we denote the raw score in 
Equation (2) as Q-score1 = 62. For better statistical 

assessment, we perform the following transformations: 
 
   
 
 

Calculate the Q-score of the proteins 
using (2) and draw the distribution. 

From the distribution derive 
the probability / confidence 

Read next 
protein if 

available from 

Stop 
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We get the Transformed Q-score = 341 and given a 
Gaussian distribution, we obtain the probability of matching 
the input m/z values with the mass of the peptide in this 
protein by chance (expectation value) as 1.9 *10-5. This 
means that we have a high confidence that our hit is correct. 
For this protein, the total number of input m/z, intensity was 
11 and we are able to match 9 of the 11 inputs. 
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         Fig. 2. Prediction for Sample 1. A normal curve is fit 
to the graph with regression coefficient r2=0.97 

 
Figure 2 shows the Gaussian distribution of transformed Q-
scores of all the proteins in the SWISS-PROT database. The 
regression was plotted using Sigma-Plot 8.0 (SPSS Inc., 
Chicago, IL). The curve can be fit as the following: 

}
2

)38.32/)67.188((*5.0exp{*72.44259.2 −−+= xy  (3) 
 

With normalized Gaussian distribution, we calculated the 
probability for true identification given the Q-score. The 
basic idea is that score lies after 2σ from center (>µ+2σ), 
the result is significant, as there is less chance such a result 
is achieved by chance; if the score is close to the peak of the 
Gaussian distribution ( ~µ ), the result is insignificant, since 
the result can be easily achieved by chance without any 
connection between the PMF data and the matched peptide; 
if the score shifts from center from the left by σ ( < µ -σ ) or 
more of the Gaussian distribution, it is very unlikely that the 
matched peptide in the database represents the true protein 
in the experimental sample. 
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         Fig. 3. Prediction for Sample 2. A normal curve is fit 
to the graph with regression coefficient r2=0.97.

 
Figure 3 is the Gaussian distribution for Sample 2 where the 
target protein was �membrane-bound acyl-CoA binding 
protein� (Arabidopsis thaliana, Genbank accession 
AF320561). Our algorithm found the top hit in the database 
as �Myosin VIIa, MOUSE species�. The distribution tells us 
that the Q-score lies inside (µ+σ) making the confidence 
level of this prediction is very low. Indeed the top hit was 
incorrect. For this sample, the score S was 288, and the 
statistical assessment was with raw Q-score1 = 4.03; 
transformed Q-score = 205 and based on Gaussian 
distribution, the expectation value is 0.29, which mean a low 
confidence.  
 

Table 1. Prediction results for Horse Myoglobin  
 

Start..End Peptides Theoretical mass  
(dalton) 

Mass Matched 
(dalton) 

True 
prediction? Intensity 

1..16 GLSDGEWQQVLNVWGK 1815.903 1815.8389 Yes 25.57 
17..31 VEADIAGHGQEVLIR 1606.8554 1606.8289 Yes 100 
32..42 LFTGHPETLEK 1271.6636 1271.6260 Yes 10.64 
64..77 HGTVVLTALGGILK 1378.8423 1378.8032 Yes 13.24 
79..96 KGHHEAELKPLAQSHATK 1982.0572 1982.0261 Yes 5.85 
80..96 GHHEAELKPLAQSHATK 1853.9623 1853.9027 Yes 10.58 

103..118 YLEFISDAIIHVLHSK 1885.0224 1884.978 Yes 22.39 
119..133 HPGDFGADAQGAMTK 1502.6699 1502.6249 Yes 14.71 
134..139 ALELFR 748.4358 748.4176 Yes 13.17 

Sample 2 

Q=µ+2σ

Q=µ+2

Sample 1 
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The computational mining for the protein was mainly run on 
a Pentium 4 � 2.8ghz machine with 2GB ram. Mining for a 
protein with 10 m/z, intensity data points using SWISS-
PROT database took 0.12 second. Large-scale validation is 
ongoing and performed on supercomputers at Oak Ridge 
National Lab. 

 
V.  DISCUSSION 

 
 In this paper, we combined a computational approach 
with statistical assessment for protein identification using 
PMF data. The final result gives a expectation value 
indicating the confidence for the protein identification to be 
true. We demonstrated our algorithm is effective using both 
positive and negative examples.  
 
 One limitation for our algorithm is that currently it does 
not address the problem of post-translational modification, 
which has been a great challenge for any MS data analysis. 
For many cases, the peptides cannot be identified solely by 
measure the molecular weight based on the protein 
sequences. Another limitation is that the computing time is 
long for confidence assessment. We will develop an 
improved method using a similar idea in BLAST [9]. In this 
case, the distribution does not have to be produced explicitly 
for each protein identification. We will also test and 
improve our methods using more PMF data on known 
protein samples. 
 

VI.  CONCLUSION 
 
 In summary, we have tried to find a good statistical 
model to describe the matching tendency of each protein 
towards an input mass. We transform the protein hits as 
Gaussian distribution, by which we can derive the statistical 
confidence for each protein hit for that database. Our results 
demonstrate this approach is effective in PMF data analysis.  
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