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ABSTRACT

Motivation: Analysis of the functions of microorganisms and their

dynamics in the environment is essential for understanding microbial

ecology. For analysis of highly similar sequences of a functional gene

family using microarrays, the previous long oligonucleotide probe

design strategies have not been useful in generating probes.

Results: We developed a Hierarchical Probe Design (HPD) program

that designs both sequence-specific probes and hierarchical cluster-

specific probes from sequences of a conserved functional gene based

on the clustering tree of the genes, specifically for analysesof functional

gene diversity in environmental samples. HPD was tested on datasets

for the nirS and pmoA genes. Our results showed that HPD generated

more sequence-specific probes than several popular oligonucleotide

design programs.With a combination of sequence-specific and cluster-

specific probes, HPDgenerated a probe set covering all the sequences

of each test set.

Availability: http://brcapp.kribb.re.kr/HPD/

Contact: yhpark@kribb.re.kr

Supplementary information: http://brcapp.krib.re.kr/HPD/HPD_

Supplementary.doc

INTRODUCTION

Microorganisms in the environment have important roles in regu-

lating the biogeochemistry of ecosystems. In order to evaluate the

activities and functions of microbial communities, it is necessary to

characterize the diversity of the functional microbial group of inter-

est and to analyze individual members of the group under different

environmental conditions. Because of the tremendous microbial

diversity in the environment, extensive coverage is very important

(Amann et al., 1995; Holben and Harris, 1995; Guschin et al., 1997;
Torsvik and Ovreas, 2002).

Owing to the limited knowledge about cultivation conditions,

most environmental microorganisms are uncultivated in the labor-

atory (Ward et al., 1990; Amann et al., 1995; Whitman et al., 1998;

Curtis et al., 2002). To assess the structure and genetic potential of

the microbial community, PCR-based molecular technologies, such

as gene cloning, denaturing gradient gel electrophoresis and ter-

minal restriction fragment length polymorphism have been used

widely for assessing the structure and activities of the microbial

community. In the case of carbon and nitrogen cycling genes, the

pmoA, nirS, nifH, nifD, nirK, amoA, nosZ and narG genes are highly

conserved, and many of them could be retrieved directly from

environmental samples (i.e. metagenomes) by PCR amplification

using universal primers (Rosch et al., 2002; Dedysh et al., 2004).
To date, hundreds of gene sequences for a single functional gene

have been deposited in the public database through this approach.

Theoretically, these accumulated data resources make possible a

comprehensive analysis of all these genes and their activities in the

environments.

Recently, various types of DNA microarrays, such as cDNA

microarrays and oligonucleotide microarrays, have been applied

to study the microbial diversities of various environments and

these arrays are useful because of their high throughput nature

(Guschin et al., 1997; Wu et al., 2001; Taroncher-Oldenburg

et al., 2003; Bodrossy et al., 2003). Previous research has shown

that long oligonucleotide probes (50–70mer) have a better effici-

ency than short oligonucleotides (20–30mer) or cDNA probes in

microarray-based diversity searches (Taroncher-Oldenburg et al.,
2003; Tiquia et al., 2004; Rhee et al., 2004). The intensive labor

in both PCR amplification and array fabrication limits the appli-

cation of cDNA microarrays. In addition, it is a challenge to

obtain all the diverse environmental clones and bacterial strains

from various sources as templates for amplification. Moreover,

the signal intensity from long oligonucleotide probes is several

orders of magnitude above that of a short oligonucleotide micro-

array (Schröder et al., 2001, http://www.mwg-biotech.com/docs/

discovery/an_arrays2_014.pdf).

Many computational programs have been developed for oligo-

nucleotide probe selection, for instance, OligoWiz (Nielsen et al.,
2003), PROBEmer (Emrich et al., 2003), Osprey (Gordon and

Sensen, 2004), OligoPicker (Wang and Seed, 2003) and OligoArray

2.1 (Rouillard et al., 2003). These programs generate sequence-

specific probes for each gene of a genome. However, if the target
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sequences are highly similar to each other, truly sequence-specific

probes cannot be generated because of cross-hybridization. In addi-

tion, it is difficult to define meaningful specific groups for probe

design (Behr et al., 2000). To solve this problem, a cluster- or group-

specific probe concept has been applied, specifically for highly

conserved phylogenetic genes, such as 16S rRNA. The ARB

probe design tool (Ludwig et al., 2004), PRIMROSE (Ashelford

et al., 2002), Meier’s analysis (2004) and Zhang’s analysis (2002)

have proposed to design short oligonucleotide probes (�20 bp) from

a group of sequences based on the 16S rRNA gene phylogenetic

tree. The use of ARB has also been extended to the design of short

oligonucleotides for the pmoA and amoA genes (Bodrossy et al.,
2003). However, these programs provide insufficient parameters

to design long oligonucleotides (>50 bp). The ARB uses a simple

function of melting temperature as a parameter in probe design

(ARB help, http://www2.mikro.biologie.tu-muenchen.de/arb/help_

html/probe_param.html), which is sufficient to calculate melting

temperature for short oligonucleotides, but insufficient for long

oligonucleotides. For example, to get 50mer probes using ARB,

the melting temperature boundaries need to be set to the unrealistic

levels of 100–200�C.
To the best of our knowledge, there is no software package

available for designing long oligonucleotide probes for highly con-

served gene sequences. In this paper, we describe a new algorithm

called Hierarchical Probe Design (HPD), which uses the concept

of cluster-specific probes to cover target sequences in a cluster. HPD

automatically generates probes against all nodes (clusters) of the

clustering tree for sequences of a conserved functional gene. The

scheme of Figure 1 shows how a hierarchical probe set designed

by using this program helps us identify functional members of a

microbial community.

ALGORITHM

Definitions

Before describing the procedure of designing hierarchical probes,

the terminology and conventions used in this paper are briefly

described. The probes generated by HPD include sequence-

specific probes and hierarchical cluster-specific probes. A hierarch-

ical cluster is a group of sequences that comprises a node in the

clustering tree. The level of a cluster is determined by its hierarch-

ical order. Based on the concept of hierarchical cluster, all input

sequences are divided into ‘In-Cluster’ and ‘Out-Cluster’ groups

according to their location in the tree. The In-Cluster consists of

the sequences within a hierarchical cluster, and the Out-Cluster are

those sequences outside the cluster. A sequence-specific probe

only hybridizes with a unique sequence, whereas a hierarchical

cluster-specific probe may hybridize with all or a certain number

of sequences in the In-Cluster, but it does not hybridize with

any sequences in the Out-Cluster. Thus, the cluster-specific probes

cover the sequences in a cluster completely or partially and

are referred to here as full-cluster-specific probes and partial-

cluster-specific probes, respectively. Because full-cluster-specific

probes are the ideal solutions to discriminate a cluster, priority

was given to making full-cluster-specific probes. For convenience,

Fig. 1. Aschematic diagramof application of hierarchical cluster-specific probes. (A) GenomicDNAcontaining diverse sequences of a functional gene involved

in global matter cycle could be directly extracted and labeled for microarray hybridization. (B) Sequences of a functional gene from environment and public

database could be used for hierarchical probe design for the functional gene. (C)Amicroarray fabricatedwith the probe set of the functional gene could be used for

detection of specific sequences by hybridization. (D) Result of microarray hybridization could be interpreted to assess the microbial community dynamics in

the environment.
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an oligonucleotide probe is referred to as a probe and a hierarchical

cluster as a cluster. Figure 3A shows an example of these categories

of probes.

HPD’s probe design process

HPD has been developed to generate a probe set to identify the

diversity of a highly conserved functional gene in complex samples.

To achieve this goal, HPD is composed of three stages, as shown in

Figure 2. First, the input sequences are aligned and then clustered.

Second, probe candidates are generated for each cluster. Finally,

optimal probes are selected based on experimentally validated

criteria. Each step is detailed in the following sections.

Multiple alignments and clustering. To obtain a hierarchical clus-

ter, HPD first incorporates ClustalW (Thompson et al., 1994) to
conduct a multiple alignments for the input sequences. ClustalW

compares each sequence successively to create a single alignment

in which homologous residues are aligned in the same columns.

Sequences containing gaps which shift the open reading frame were

removed after the alignment was completed. User-generated aligned

sequences can be imported into HPD to produce a user-oriented

cluster or to accelerate the execution speed.

Based on these multiple alignments, sequences are clustered hier-

archically by existing clustering methods. Our program extracts

grouping information from the constructed tree to determine

the hierarchical clusters. Here, for example, the neighbor-joining

(Saitou and Nei, 1987) and UPGMA (Sokal and Michener, 1958)

methods are utilized to cluster input sequences in HPD. However,

to enhance the program’s flexibility, HPD has an optional function

capable of importing a clustering tree generated externally. Any

clustering methods can be employed, according to the user’s

preference.

Probe candidate selection. The aim of this stage is to generate all

possible probe candidates and assign each probe candidate to a

cluster based on the probe specificity. As shown in Figure 3, the

first step of the process starts by selecting probe candidates from

each sequence. Next is the hierarchical process of cluster-specific

probe candidate selection. When the process reaches the root clus-

ter, the probe candidates residing in each sequence or cluster are

assigned to be sequence- or cluster-specific probes. This process is

explained in detail below.

Step 1. Probe candidate generation: the first step starts from the

lowest level of a clustering tree as shown in Figure 3A. Each

terminal is a cluster comprising one sequence (S1–S5). Initially,

all possible probe candidates are generated against each of these

input sequences, without any test of specificity with regard to the

other sequences. Probe candidates are collected along with the

sequences from 50 end to 30 end using a sliding window whose

size is equal to the probe length. Each candidate has the possibility

of being a sequence-specific probe or cluster-specific probe and

selection of particular candidates proceeds according to the rules

outlined below.

Step 2. Cluster-specific probe selection: this step checks the spe-

cificity of probe candidates against clusters one-level higher. Two

sibling or hierarchically neighbored clusters are combined to gen-

erate a new upper cluster. For example, S1 and S2 form the C2

cluster, whereas S3 and S4 form the C4 cluster (Fig. 3B). The probe

candidates generated at Step 1, against S1–S5 (Fig. 3A), are tested

for their specificity toward these upper clusters (C2 and C4). If a

candidate of one sibling cluster has enough specificity when tested

against the sequence(s) of the other cluster to distinguish between

these two clusters, it stays in the sibling cluster. If not, the candidate

will be transferred to the next higher level of cluster. This process is

repeated until all the sequences constitute one cluster, in this

example C1. In other words, this process is terminated when the

recursion reaches the root of the hierarchical cluster (Fig. 3D). After

calculation of probe specificity, probe candidates specific to the

C4 cluster, (e.g. Fig. 3B), can be selected as cluster-specific probes.

All probe candidates that are not specific to the C4 cluster will be

transferred to the associated upper cluster, i.e. C3 (Fig. 3C). In each

step, probe specificity is checked by comparing a probe with the

A

B

C

Fig. 2. Flowchart summarizing the process HPD uses to select an optimal

probe set. (A) Multiple alignment of input sequences, and the generation or

import of hierarchical clusters. (B) Bottom-up selection of hierarchical probes

for each cluster. (C) Selection of the best specific probes for each cluster.
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associated target regions (at the same column of alignment) of

the sequences in the In-Cluster and the Out-Cluster. This whole

round of steps is repeated until it reaches the root cluster (C1 in

Fig. 3D).

After reaching the stage of the root cluster, the probe candidates

associated with clusters are judged to be cluster-specific probes.

And the candidates associated with individual sequences only are

judged to be sequence-specific probes.

Optimal probe set generation. The best probes set should show

the maximum coverage of the associated In-Clusters and the max-

imum difference of identity between the In-Clusters and Out-

Clusters. Additionally, all probes for each cluster are sorted

based on several parameters of probe quality including cluster cov-

erage, specificity, GC content and hairpin energy. The first sorting

criterion applied is the region of sequence where a probe is

designed. Since lengths of input sequences are different, there

could be regions at 50 or 30 where alignment could not be made.

The probes generated in these unaligned regions were excluded

from the probe set. The second sorting criterion is the sequence

coverage of In-Cluster sequences, which is a measure of the cluster

adaptation of the probe. The third is the difference in identity

between the target regions of the In-Cluster and Out-Cluster

sequences, which sorts the probes in order to maximize specificity.

Probes exceeding the predefined or program default limits of GC

content or hairpin energy are removed from the sorted list. Finally,

the specificity of the remaining probes is re-checked against the

In-Cluster and Out-Cluster sequences using BLAST (Altschul

et al., 1997). In the earlier stages of probe design (see above),

HPD searches the sequences of the In-/Out-Cluster for possible

cross hybridization only over the position where the probe was

designed. Alignment to other regions of the sequence may allow

cross hybridizations that generate false positives. Therefore, this

BLAST filter step can assure the quality of the probe and screen out

false positive probes. To choose the best hierarchical probe set from

the pool of selected probes, each probe that has satisfied the above

criteria is ranked by its specificity, i.e. fitness of finding associated

clusters. Biophysical parameters of the selected probe, such as

melting temperature, GC content, hairpin energy and hybridization

free energy, are calculated and provided by HPD.

IMPLEMENTATION

The algorithm presented here was implemented in a computer

program written in the Object Pascal programming language.

The program incorporated ClustalW for multiple alignment and

BLAST for local alignment. To calculate the folding energy of

hairpin formation and the melting temperature of self-annealing,

two programs were used, hybrid-ss-min and hybrid-min, which

are included in the OligoArrayAux software package (Markham

and Zuker, 2004, http://www.bioinfo.rpi.edu/applications/hybrid/

OligoArrayAux.php). HPD was compiled with a Borland’s Delphi7

complier.

HPD reads input sequences in the FASTA or GenBank format for

alignment and also provides an interface for importing aligned

sequences. This interface provides flexibility in editing aligned

sequences or interfacing with other external programs, as the

user prefers. HPD can load a clustering tree as well. The values

for parameters, such as the oligonucleotide probe length, GC con-

tent boundary, identity threshold, hairpin energy limitation and Tm

ranges, are options that can be modified by the user. The resulting

probes are stored in a tabulated text file or in Microsoft Excel and

C3

Fig. 3. Probe candidate selection process. (A), (B, C) and (D) describe the initial, the exploring and the final stages of the process, respectively. Dark circles within

the dotted region indicate that probe candidates exist for the cluster or sequence. White circles within the dotted region indicate that no probe candidate exists for

that cluster or sequence. The circles outside of the dotted region indicate the clusters that are not yet explored.
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the tabulated data for each probe include cluster ID, probe sequence,

melting temperature, hairpin energy and hybridization free energy.

Additionally, HPD provides information about the probe position in

the sequence from which it was generated, the target sequences

covered by the probes in the cluster and the cluster’s hierarchical

position.

HPD requires Microsoft Windows NT, 2000 or XP as the oper-

ating systems. Its minimum requirement is Pentium 3 500MHz with

256 MB memory. The size of memory required is dependant on the

size of the target sequences. The computation time obviously

depends on the number of input sequences. Here, we tested

using 400 nirS gene sequences with 807.2 bp of average length.

The correlation of computation time and size for sequences is

described in detail in the Supplementary section.

Parameters of HPD

The default probe length was set to 50 bp based on the reports by

Schröder et al. (2001) and Rhee et al. (2004). For hierarchical

cluster-specific probes, the hybridization threshold of heteroduplex

formation between the probe and the target sequences was set to

�30 kcal/mol of hybridization free energy, 88% of probe-target

identity and 15 bp of continuous stretch of matches on the basis

of previous experimental data (Kane et al., 2000; Rhee et al., 2004;
Steward et al., 2004). To remove the probes having hairpin sec-

ondary structures, the default for the self-folding energy threshold

was set to �3 kcal/mol based on the reports by Bodrossy et al.
(2003). To obtain the melting temperature, free energy rules were

applied at 65�C. The GC content ranged between 35 and 65%. The

number of final probes for each cluster was limited to one, unless

otherwise specified.

RESULTS AND DISCUSSION

To evaluate HPD, we selected two ecologically important genes

involved in the nitrogen and carbon cycles: nitrite reductase (nirS)
and methane monooxygenase (pmoA). The sequences downloaded

from GenBank (http://www.ncbi.nlm.nih.gov) in June 2004 varied

in length (128–1791 bp). Most of the deposited sequences were

partial and extracted directly from environmental samples. To gen-

erate a high-quality sequence alignment to use in HPD, the nirS
sequences were filtered by a threshold value of 700 bp minimum,

and the pmoA sequences were filtered by a threshold value of 450 bp

minimum. The resultant test sets contained 421 nirS sequences and

490 pmoA sequences. All the sequences were conserved. The nirS
sequences had an average identity of 68.4 ± 7.5% (standard

deviation) and the pmoA sequences had an average identity of

69.5 ± 6.4%.

Probe generation from nirS and pmoA test sets

Using the default constraints described in the Implementation sec-

tion, a total of 380 possible probes (145 sequence-specific probes

and 235 cluster-specific probes) were found in the nirS set, and 234
probes (63 sequence-specific and 171 cluster-specific) were found

in the pmoA set (Table 1). Sequence-specific probes covered 35%

of nirS sequences and 13% of pmoA sequences, respectively. The

number of pmoA sequence-specific probes is less than that of

nirS because of the higher pairwise sequence similarity in pmoA
than in nirS (data not shown). When we included the hierarchical

cluster-specific probes, the probe sets covered all the sequences

for both nirS and pmoA test sets. For the clusters in which

full-cluster-specific probes could not be designed, partial-cluster-

specific probes were selected, as described in the Algorithm section.

In nirS and pmoA, the number of full-cluster-specific probes was

larger than the number of partial-cluster-specific probes (Table 1).

The full-cluster-specific probes for nirS covered 304 sequences,

�72% of the test set. In the case of pmoA, 479 sequences were

covered by full-cluster-specific probes, �98%. However, the nirS
full-cluster-specific probes were localized to the lower levels of the

hierarchy, and the sequence coverage per probe was much smaller.

In addition, the nirS test set had fewer clusters which contained

sequences with high identities (>90%) to each other at the bottom of

the tree than pmoA. Thus, full-cluster-specific probes covered more

sequences in pmoA than nirS.

Effect of clustering tree on hierarchical probe design

HPD requires a rooted tree as an input, because it selects probe

candidates in a hierarchical manner as described in Algorithm sec-

tion. Since probe design is dependent on the clustering method, we

examined the effect of the clustering method and tree topology in

generating an optimized probe set. In the present study, we com-

pared the trees clustered by UPGMA and neighbor-joining methods.

UPGMA is a simple clustering method by which local topological

relationships are identified in the order of similarity. Neighbor-

joining constructs a tree by linking the least-distant pair of nodes

with a different kind of cluster results. Since the neighbor-joining

method generates an unrooted tree, the sequence showing the

longest distance in the UPGMA tree was selected as a default

root. Although Maximum parsimony is a site-dependent clustering

method, it could be used successfully for probe generation. The

neighbor-joining, UPGMA and Maximum parsimony trees gener-

ated a similar number of probes for both nirS and pmoA (Table 1).

By using the neighbor-joining clusteringmethod of ClustalW, a total

of 380 probes were found for nirS and 244 for pmoA. When we

compared the cluster identity between the UPGMA and neighbor-

joining trees, 279 clusters (57%) were identical in pmoA and 227

Table 1. The test results of HPD

Clustering method Type of probe Number of probes for

test gene

nirS pmoA

UPGMA Sequence-specific probe 145 (145)a 63 (63)

Full-cluster-specific probe 142 (304) 127 (479)

Partial-cluster-specific probe 93 (410) 44 (474)

Missing sequences 0 0

Neighbor-joining Sequence-specific probe 145 (145) 63 (63)

Full-cluster-specific probe 153 (313) 117 (355)

Partial-cluster- specific probe 82 (411) 64 (473)

Missing sequence 0 0

Maximum

parsimony

Sequence-specific probe 145 (145) 63 (63)

Full-cluster-specific probe 118 (234) 90 (390)

Partial-cluster- specific probe 88 (421) 95 (491)

Missing sequence 0 0

The number of probes generated by different clustering methods are compared.
aNumber in parenthesis is total sequence coverage of the probes.
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clusters (54%) were identical in nirS. In the identical clusters, HPD

generated the same cluster-specific probes (data not shown).

This suggests that HPD works consistently on different clustering

trees.

Impact of identity threshold and probe length on

hierarchical probe design

To evaluate the impact of the identity threshold on probe design, we

tested identity thresholds ranging from 84 to 92% (Fig. 4). Here, the

sequence coverage concerns only the In-Cluster sequences since

probes generated shows specificity only to sequences of the cluster.

When all input sequences are assumed as 100%, ‘cumulative’

means sum of the unique (not redundant) sequences covered by

the cluster-specific probe and subcluster-specific probes. Our results

demonstrated that the cumulative sequence coverage decreased in

small-sized clusters (i.e. clusters close to the terminal nodes), as

identity threshold decreased. With lower identity thresholds,

although the number of probe candidates increased, more probe

candidates had the potential to cross-hybridize to sequences of the

Out-Cluster. In nirS, we observed a relatively smaller decrease in

cumulative sequence coverage attributed to changes in the threshold

value, than in pmoA. Since nirS is more diverse in sequences, less

effect would be expected on the number of cluster-specific probes

by changes in the identity threshold.

To evaluate the effect of probe length on probe design

efficiency, we varied the probe length from 20 to 70 nt (Fig. 5).

Our results indicate that a probe set 20 bp in length showed

greater coverage for a set of small-sized clusters than probe

sets of 40–70 bp in length. Changes in probe length in the range

of 40–70 bp did not show any significant effect on the coverage of

the probe set. Zhang et al. (2002) reported that signature sequences

(in the range of 5–15 bp) have a polar distribution in the tree;

i.e. longer oligonucleotides tend to identify the clusters near the

leaves (small-sized clusters), whereas short oligonucloetides are

more likely to pick out clusters near the root (large sized clusters).

However, this effect was not observed in probe sets with a length

>20 bp in HPD.
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Fig. 4. Impact of identity threshold on probe designs (A) nirS and (B) pmoA.

The number of sequences covered by probes increases as the size of the cluster

increases. Each probe is a 50mer oligonucleotide covering a sequence or a

cluster of sequences. Probe sets were generated using 84, 88 and 92% identity

thresholds as default parameters.
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Fig. 5. Impact of probe length on probe designs (A) nirS and (B) pmoA. The

number of sequences covered by probes increases as the size of the cluster

increases. Each probe is a 50mer oligonucleotide covering a sequence or a

cluster of sequences. Probe sets were obtained by using probe lengths of 20,

40, 50 and 70 bp as default parameters.
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Assessment of HPD using a small sample

set of sequences

The results of HPD are displayed in detail in Figure 6 for two small

sets of sequences. A sample set that contains 47 nirS sequences

having 64% average identity was selected from a local region of

the tree constructed from 421 nirS sequences. Another sample

set that contains 50 pmoA sequences having 85% average identity

was picked from a local region of the tree constructed from

490 pmoA sequences. The quality and distribution of the probes

is shown by combining the sequence-specific and cluster-specific

probes generated using the default parameters (Fig. 6). The

sequence identity of a cluster in the nirS sample set is rather

lower than that in the pmoA sample. The nirS sample set has 9 sub-

groups and 24 sequences within the 95% identity threshold (see the

line x of Fig. 6). In contrast, the pmoA sample set has 11 subgroups

and 2 sequences within the 95% identity threshold. As a result,

24 sequence-specific probes were found for the nirS sample set

among 55 probes, whereas only two sequence-specific probes

were found for the pmoA sample set among 27 probes. The

sequence-specific probes were designed for sequences showing

<95% identity to the other sequences. The full-cluster-specific

probes of small clusters showed a relatively high specificity

(more black squares as shown in Fig. 6). A cluster-specific probe

which is close to the root cluster (e.g. 40 and 42 in Fig. 6A; 18 and

26 in Fig. 6B), has some gray squares (<100% identity to target) in

the cluster sequences. However, the full-cluster-specific probes

close to the terminal clusters have a 100% probe-target identity.

Two clusters (P23 and P24 in Fig. 6B) in the pmoA sample set did

not have any candidate probes covering all the In-Cluster sequences,

and, therefore, partial-cluster-specific probes were selected. Twelve

clusters in the nirS sample set (41, 44 and 46–55 in Fig. 6A) did not

have any candidate probes covering all the In-Cluster sequences;

thus, partial-cluster-specific probes were selected for these clusters.

The missing specificity of a cluster could be complemented by its

subcluster (not other partial cluster) specific probes. For example,

in the Figure 6A, partial-cluster probe 43 could be complemented

by subcluster’s probes, such as 5, 6, 25, 26 and 27.

Comparison of HPDwith other probe design programs

To assess the performance of the HPD software, we compared HPD

with two other probe design software packages, OligoPicker and

OligoArray 2.1, using three sample datasets. Since there are no

available software packages that generate long oligonucleotide

cluster-specific probes from functional genes, we could only com-

pare the ability to generate sequence-specific probes. We used three

sample sets for comparison: the two sample sets used for testing the

performance of HPD above and the first 44 ORF sequences from the

Escherichia coli K-12 genome (ftp://ftp.ncbi.nih.gov/genbank/

genomes/Bacteria/Escherichia_coli_K12/). HPD utilized the

default parameters described earlier. The parameters of OligoPicker

and OligoArray 2.1 were set to the program defaults, with the

Fig. 6. Assessment of HPD results using a model sample set of genes. HPD generated 55 oligonucleotide probes targeting a sample set of 47 nirS sequences (A)
and 27 oligonucleotide probes targeting a sample set of 50 pmoA sequences (B). Sequence coverage of a cluster is shown as a vertical rectangle on thematrix. The

intensity of the block in the matrix indicates the probe’s specificity to the target sequence or cluster, from background (<88% of identity) to black (100% of

identity) as shown in the scale at the bottom of (A) nirS. Probe identifications are placed on the top of the matrix, and their corresponding positions are marked in

the clustering tree on the left side. The dashed line (x) indicates the 95% sequence similarity threshold. The solid line (y) separates the probes based on 95%

sequence similarity of clusters, which corresponds to line (x). Partial-cluster-specific probes are marked by stars on the probe number on top of the matrix.
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exception of probe length, which was set to 50, and the GC content,

which was limited to 35–65%.

The probes designed by these two programs were examined

by BLAST search and filtered by 88% identity stringency, since

Taroncher-Oldenburg et al. (2003) and Rhee et al. (2004) have

shown that identity and thermodynamic condition have a linear

relationship. Since OligoPicker and OligoArray 2.1 showed similar

results for these datasets (data not shown), we only present the

results from OligoArray 2.1. As shown in Table 2, OligoArray 2.1

generated 47 probes for the nirS sample set. However, only 14

probes were sequence specific, and the other 33 probes were

shown to hybridize other non-target sequences, thus generating

false positives. HPD generated 24 sequence-specific probes and

31 cluster-specific probes, which were verified as accurate probes.

In the pmoA sample set, OligoArray 2.1 generated 50 probes

which were shown to be non-specific. HPD generated 2 sequence-

specific probes and 24 cluster-specific probes for the pmoA
sample set.

OligoArray 2.1 and HPD worked correctly for the E.coli sample

set. They generated a sequence-specific probe for each sequence

although the position of the probe design was different. This shows

that HPD is potentially applicable for designing sequence-specific

probes for genome sequences. HPD considers all possible combina-

tions of hybridization for each probe, in contrast to the heuristic

algorithms adopted in OligoPicker and OligoArray 2.1, which often

skip the best probes.

CONCLUSION

In summary, we present here a new probe design software called

HPD to generate sequence-specific and cluster-specific long oligo-

nucleotide probes for sequences of a conserved functional gene.

Owing to the high degree of similarity between the sequences within

each functional gene category, it has been impossible to design

sequence-specific probes for all input sequences. HPD attempted

to find hierarchical cluster-specific probes, which cover the target

sequences of a cluster within a hierarchy.

HPD is capable of producing multiple probes per sequence or

cluster to cover an input sequence set in parallel and in hierarchy.

When multiple probes of different hierarchical levels are combined

for diversity analysis of a functional gene, the confidence in

identifying target microorganisms from the microbial community

will be enhanced. In the future, we will focus on increasing the

probe design efficiency by incorporating faster alignment tools and

developing a heuristic search algorithm that considers hierarchical

clustering.
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