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Abstract

Phylogenetic networks can model reticulate evolutionary events such as hybridization, recombination, and horizontal
gene transfer. However, reconstructing such networks is not trivial. Popular character-based methods are computation-
ally inefficient, whereas distance-based methods cannot guarantee reconstruction accuracy because pairwise genetic
distances only reflect partial information about a reticulate phylogeny. To balance accuracy and computational
efficiency, here we introduce a quartet-based method to construct a phylogenetic network from a multiple sequence
alignment. Unlike distances that only reflect the relationship between a pair of taxa, quartets contain information on the
relationships among four taxa; these quartets provide adequate capacity to infer a more accurate phylogenetic network.
In applications to simulated and biological data sets, we demonstrate that this novel method is robust and effective in
reconstructing reticulate evolutionary events and it has the potential to infer more accurate phylogenetic distances than
other conventional phylogenetic network construction methods such as Neighbor-Joining, Neighbor-Net, and Split
Decomposition. This method can be used in constructing phylogenetic networks from simple evolutionary events in-
volving a few reticulate events to complex evolutionary histories involving a large number of reticulate events. A software
called “Quartet-Net” is implemented and available at http://sysbio.cvm.msstate.edu/QuartetNet/.
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Introduction
In natural history, reticulate events, such as horizontal gene
transfer (HGT), hybridization, and recombination, have
been demonstrated to be important in contributing to
speciation, drug resistance, and DNA repair (Bruce 2002).
For example, HGT is a significant evolutionary mechanism
in shaping the diversification of bacterial genomes
(Doolittle et al. 2003), hybridization plays a key role in
the evolution of plants and fish (Linder and Rieseberg
2004), whereas recombination is very important in
human genome evolution (Meunier and Duret 2004).
Phylogenetic tree construction is a conventional method
used to demonstrate evolutionary relationships among
genes and species (Felsenstein 2004). However, detection
of reticulate events, such as HGT, hybridization, and
recombination, using phylogenetic trees is not straightfor-
ward, as it involves comparison of tree topologies, which is
not trivial due to cluster confidence assessment. Parallel
evolution, model heterogeneity, and sample or inference
errors complicate phylogenetic tree construction.

Phylogenetic networks, a generalization of phylogenetic
trees, allow non-tree-like structures to represent conflicting
signals or alternative evolutionary histories for a group of taxa.
Thus, phylogenetic networks provide additional capacity to
detect reticulate events by illustrating the conflicting tree
topologies as reticulate blocks in a network. In the past few
years, various phylogenetic network construction methods

have been developed (Posada and Crandall 2001; Semple
and Steel 2003; Morrison 2005; Gascuel and Steel 2006).
These methods can be explicit network construction describ-
ing explicit evolutionary events, such as hybridization net-
works (Linder and Rieseberg 2004; Yu et al. 2011),
recombination networks (Gusfield et al. 2004; Huson and
Kloepper 2005) and HGT networks (Kunin et al. 2005; Jin
et al. 2006; Park et al. 2010). Implicit network construction,
for example, split networks (Bandelt and Dress 1992a, 1992b),
captures conflicting signals without specifically identifying re-
ticulate evolutionary events. Most of these explicit and im-
plicit network methods can be grouped into two categories:
distance-based methods (Bandelt and Dress 1992a, 1992b;
Bryant and Moulton 2004; Huson and Bryant 2006; Willson
2006) or character-based methods (Templeton et al. 1992;
Bandelt et al. 1995, 1999; Fitch 1997; Huber et al. 2002;
Gusfield et al. 2004; Song and Hein 2005). Character-based
methods infer a phylogenetic network directly from the se-
quence information through usually a parsimony or maxi-
mum-likelihood criterion, whereas distance-based methods
first construct a genetic distance matrix of the taxa set and
then build the network from this distance matrix. Distance-
based methods are often computationally more efficient than
character-based ones. However, distance-based methods can
cause potential loss of accuracy because the information em-
bedded in genetic distances is less complete than those
extracted from raw character data (Felsenstein 2004).
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To balance accuracy and computational efficiency, a com-
promise strategy is to construct phylogenetic trees or net-
works from (weighted) triplets, for example, TripleML
(Ranwez and Gascuel 2002) and level 2 phylogenetic net-
works (van Iersel et al. 2009), or from (weighted) quartets,
for example, Tree-Puzzle (Strimmer and von Haeseler 1996), a
dynamic programming approach (Ben-Dor et al. 1998), quar-
tet cleaning (Berry et al. 1999), Addquart (Berry and Gascuel
2000), QNet and SuperQ (Grünewald et al. 2007, 2013), a
stochastic method (Tria et al. 2010), and some explicit meth-
ods (Posada and Crandall 2001; Lemey et al. 2009), or from
clusters (van Iersel et al. 2010). Weighted triplets and quartets
keep more information and cause less reduction of raw data
than distances. However, most prevailing methods use un-
weighted triplets and quartets, which has been proven by St.
John et al. (2003) to be less sensitive than efficient distance
based methods like Neighbor-Joining (Saitou and Nei 1987).
In consequence, triplet- and quartet-based methods are not
as popular as their distance-based competitors.

In this article, a novel method, Quartet-Net is presented to
reconstruct split networks from a collection of weighted trip-
lets and quartets. It can be viewed as a quartet analog of Split-
Decomposition (Bandelt and Dress 1992a, 1992b). Quartet-
Net first calculates triplet and quartet weights directly from
multiple sequence alignments (MSAs) by a parsimony
method using only parsimony informative sites and then
functions by agglomeratively decomposing all triplet and
quartet weights into simple components based on full
splits. Consistency is an important criterion for evaluating a
reconstruction method. A reconstruction method is called
consistent on a special set of trees or networks if the
method reconstructs precisely every tree or network in the
set provided that the input data are generated from it and
that sufficient data are available. For example, Neighbor-
Joining (Saitou and Nei 1987) is consistent on all trees,
Split-Decomposition (Bandelt and Dress 1992a, 1992b) is con-
sistent on weakly compatible systems (Bandelt and Dress
1992a, 1992b), and Neighbor-Net (Bryant and Moulton
2003) and QNet (Grünewald et al. 2007, 2009) are consistent
on circular split systems. We prove that Quartet-Net is con-
sistent on “2–weakly compatible” split systems, a more gen-
eral class of split systems than trees, weakly compatible
systems and circular split systems. Thus, Quartet-Net is capa-
ble of accurately reconstructing a larger set of split networks
than other methods. In addition, Quartet-Net is effective in
inferring phylogenetic distances.

Results and Discussion
We perform an analysis on artificial DNA sequence data gen-
erated from a phylogenetic history containing two reticula-
tion events and two published DNA sequence data sets: a
bacterial data set used by Takahashi et al. (2009) to classify
bacterial species and estimate their phylogenetic relationships
and a collection of complete mitochondrial genomes of 31
squamata (or scaled reptiles) species. The study of bacterial
data sheds light on the classification of bacteria, whereas that
of squamata data serves as an illustration that Quartet-Net
has the ability to reconstruct complex networks for data from

taxa sets known to have many reticulate events (Townsend
et al. 2004). We also compare the results with four widely
used phylogenetic tree and network reconstruction methods:
Neighbor-Joining (Saitou and Nei 1987), Split Decomposition
(Bandelt and Dress 1992a, 1992b), Neighbor-Net (Bryant and
Moulton 2004), and QNet (Grünewald et al. 2007).

Analysis on Artificial Data

We use the software Dawg (Cartwright 2005) with the
GTR + Gamma + I model to generate six DNA sequences
from the four feasible trees contained in a phylogenetic sce-
nario shown in figure 1. The substitution rate was set to be
0.01 and the sequence length 40,000 bp.

This phylogenetic history is basically tree-like with two
reticulations at A and B. We completed 100 runs using
Dawg (Cartwright 2005), which generates 100 alignments
from the phylogenetic history. The alignments of six DNA
sequences at a, b, c, d, e, and f were used as inputs to
Quartet-Net, QNet (Grünewald et al. 2007), Neighbor-Net
(Bryant and Moulton 2004), Split-Decomposition (Bandelt
and Dress 1992a, 1992b), and Neighbor-Joining (Saitou and
Nei 1987). For the distance-based methods, we used the
uncorrected P distance as implemented by SplitsTree v4
(Huson and Bryant 2006) and for QNet we used the “ex-
pected branch lengths,” a maximum-likelihood–based esti-
mation of the quartet weights.

To perform a better comparison, we list in table 1 all
nontrivial true splits and splits reconstructed by the five
methods with bootstrap value larger than or equal to 10
together with their averaged weights. The trivial splits are
ignored because all methods reconstruct them correctly.
Because of the different strategies to calculate weights from
the MSA, the edge lengths can only be compared according
to proportions. For convenience, we normalize each weight
by wðabcd j ef Þ=6 because the split abcd j ef is detected by all
methods.

As can be seen from table 1, Quartet-Net is able to accu-
rately reconstruct all seven nontrivial splits in all 100 runs;
however, the other four methods fail to reconstruct some
nontrivial splits in most runs. For example, QNet
(Grünewald et al. 2007) fails to reconstruct full splits
abce j df , abdf j ce, abef j cd, abf j cde in almost half of
the runs, and the other three methods perform even worse.
Except for Neighbor-Joining (Saitou and Nei 1987), all other

FIG. 1. A phylogenetic history containing two reticulations at A and B,
respectively; the artificial sequence data are generated from this
phylogeny.
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methods reconstruct some false-positive nontrivial splits with
small weights. The reason might be random noise and a bias
of the methods to compute distances and quartet weights
from an MSA. Though the splits predicted by Neighbor-
Joining (Saitou and Nei 1987) are true splits, it fails in inferring
three splits abce j df , abdf j ce, and abf j cde resulting from
reticulations in all 100 runs and two splits abc j def and
abef j cd in almost half of the runs. It is due to the fact that
Neighbor-Joining (Saitou and Nei 1987) only keeps the stron-
gest compatible splits. In addition, the proportions of phylo-
genetic distances inferred by Quartet-Net are almost identical
to the real phylogenetic history and is better than those in-
ferred by the other four methods.

Analysis on Bacterial Data

The bacterial data set consists of concatenated sequences of
seven genes (16S rRNA, 23S rRNA, gyrB, phyH, recA, rpoA,
and rpoD) from 36 bacterial species, with lengths approxi-
mately 9,200� 12,700 bp (Takahashi et al. 2009). GC-con-
tent is a very important criterion for bacterial classification. It
is defined as the percentage of guanine and cytosine in a
sequence. The 36 bacterial sequences fall into three groups
(GC-poor, GC-median, and GC-rich) according to their GC-
content levels (�30%, �50%, and �60%). There are 14
GC-poor, 11 GC-median, and 11 GC-rich bacteria, respec-
tively. The readers are referred to Takahashi et al. (2009) for
the detailed information about concatenated sequences as
well as the single genes of the species.

We use ClustalW (Larkin et al. 2007) to align 11 GC-rich
sequences, 25 GC-poor and GC-rich sequences, and all 36
sequences, respectively. The obtained multiple alignments
are taken as inputs to Neighbor-Joining (Saitou and Nei
1987), Split-Decomposition (Bandelt and Dress 1992a,
1992b), Neighbor-Net (Bryant and Moulton 2004), and
Quartet-Net. We run the programs on a Lenovo laptop

with 2.53 GHz processor and 4 GB memory. In practice, the
running time of Quartet-Net is longer than all three other
methods. It takes from a few seconds to 3 minutes for differ-
ent MSAs. We list the number of splits in table 2, and visualize
the results by SplitsTree4 (Huson and Bryant 2006). Because
of the limitation of pages, only some of the networks are
shown in figures 2–7.

Figures 2 and 3 show two Quartet-Net networks on 25 GC-
poor and GC-rich bacteria, and all 36 bacteria, respectively. An
interesting observation is that there is a split in figure 2, which
divides the GC-poor and GC-rich bacteria. However, this split
disappears with the addition of GC-median bacteria. There
are two implications from the result: 1) Extinct species might
have effect on the classification of present species, and 2) it
might not be appropriate to classify species only by their GC-
contents.

Figures 4–7 show the phylogenetic networks of 11 GC-rich
bacteria by using four methods: 1) Neighbor-Joining (Saitou
and Nei 1987), 2) Quartet-Net, 3) Split-Decomposition
(Bandelt and Dress 1992a, 1992b), and 4) Neighbor-Net
(Bryant and Moulton 2004). As one can see, Quartet-Net
presents a network quite close to the Neighbor-Joining tree

Table 1. True Nontrivial Splits and Splits Reconstructed from the Phylogenetic History in Figure 1 by Quartet-Net, QNet (Grünewald et al. 2007),
Neighbor-Net (Bryant and Moulton 2004), Split-Decomposition (Bandelt and Dress 1992a, 1992b), and Neighbor-Joining (Saitou and Nei 1987).

True Phylo Quartet-Net QNet Neighbor-Net Spit-Decomposition Neighbor-Joining

Split Weight Split Weight Bval Split Weight Bval Split Weight Bval Split Weight Bval Split Weight Bval

ab 6 ab 6 100 ab 6 100 ab 6 100 ab 6 100 ab 6 100

abc 1 abc 1.04 100 abc 0.79 88 abc 0.48 72 abc 0.10 48 abc 0.26 57

abcd 8 abcd 8.04 100 abcd 4.46 100 abcd 6.47 100 abcd 6.87 100 abcd 5.49 100

abce 1 abce 0.99 100 abce 1.10 52 abce 0.58 46 abce 0.12 54

abdf 2 abdf 2.00 100 abdf 1.65 47 abdf 1.69 39 abdf 1.06 100

abef 1 abef 1.07 100 abef 1.12 65 abef 0.34 40 abef 0.12 41 abef 0.26 43

abf 1 abf 0.98 100 abf 1.35 48 abf 1.08 54 abf 0.11 41

abd 0.08 90 adef 0.24 48 ac 0.04 36 acd 0.03 15

abcf 0.02 53 ac 0.24 40 adef 0.02 25 ace 0.02 14

ae 0.01 23 aef 0.22 36 af 0.03 18 af 0.03 14

acdf 0.02 20 acd 0.23 29 acde 0.03 16 ac 0.03 12

ad 0.11 24 acd 0.04 11 adef 0.02 11

acef 0.09 23 aef 0.04 10

NOTE.—The column “True phylo” represents the real phylogenetic history, whereas the other columns show the reconstructed splits by each method. There are three subcolumns:
1) the column “split” represents the nontrivial full splits; only left blocks of the splits are listed, 2) “bval” denotes the bootstrap value of a split in the 100 runs; only the splits with
bootstrap value larger than or equal to 10 are shown, and 3) “weight” calculates the average weight of a split in bval runs.

Table 2. The Number of Full Splits Reconstructed from Four
Methods, Namely Neighbor-Joining (Saitou and Nei 1987), Split-
Decomposition (Bandelt and Dress 1992a, 1992b), Neighbor-Net
(Bryant and Moulton 2004) and Quartet-Net on Three Bacterial
Data Sets, GC-Poor Data Consisting of 11 GC-Poor Bacteria,
GC-Poor, and GC-Rich Data Consisting of 25 Bacteria and all 36
Bacteria.

Methods GC-Poor GC-Poor and Rich All

Neighbor-joining 19 47 69

Split-decomposition 23 48 66

Neighbor-net 29 77 114

Quartet-net 22 45 60
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FIG. 2. A Quartet-Net phylogenetic network of 25 GC-poor and GC-rich bacteria.
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FIG. 3. A Quartet-Net phylogenetic network of all 36 bacteria.
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FIG. 4. The Neighbor-Joining tree of 11 GC-rich bacteria with concatenated sequences of 7 genes.
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FIG. 5. The Quartet-Net network of 11 GC-rich bacteria with concatenated sequences of 7 genes.
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FIG. 7. The Neighbor-Net network of 11 GC-rich bacteria with concatenated sequences of 7 genes.
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FIG. 6. The Split-Decomposition network of 11 GC-rich bacteria with concatenated sequences of 7 genes.
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but with some small additional non-tree like blocks. The re-
sults support the commonly accepted classification of these
bacteria (Takahashi et al. 2009) and suggest that, for the genes
considered here, the number of reticulate events in bacteria
might be relatively low. In addition, the comparison of the
networks produced by Quartet-Net, Split-Decomposition,
and Neighbor-Net shows that Quartet-Net tends to keep
only those splits with large weights and ignore the small
ones. This can be considered beneficial because those very
weak contradicting signals often result from experimental or
inference errors. Furthermore, an interesting observation
from table 2 is that Split-Decomposition and Quartet-Net
sometimes produce even fewer splits than Neighbor-Joining.
The main reason may be that both Split-Decomposition and
Quartet-Net set weights by taking a minimum over possible
values whereas Neighbor-Joining takes averages. Experimental
or inference errors on these data might also contribute to this
behavior.

Analysis on Mitochondrial Genomes of Squamatas

These squamata data consist of mitochondria genomes of 31
squamata species with lengths of approximately 20,000 bp. It
is known to be a difficult data set where model-based tree
reconstruction methods tend to struggle. The networks
reconstructed by Quartet-Net and Split-Decomposition
(Bandelt and Dress 1992a, 1992b) are shown in figures 8
and 9, respectively. Quartet-Net reconstructs 98 full splits,
whereas Split-Decomposition reconstructs a history with
only 69 full splits. Though the graph from Split-
Decomposition looks better, it might suggest more compat-
ibility than there is in the data. Many of the splits in the
Quartet-Net are 2-splits, that is, splits grouping exactly two
taxa together. Such splits will typically occur when, due to
randomization of parts of the sequences and high number of
backward or parallel mutations, the weights of all quartets
are high. Here, Quartet-Net can indicate that the pattern-
counting approach might be problematic while Split-

Decomposition can not discriminate this situation from
data that fits well on a tree with long pendant edges.

Conclusion
We have introduced and implemented a novel method called
Quartet-Net to infer phylogenetic networks from weighted
triplets and quartets. The applications of Quartet-Net showed
that this method reconstructs a wide range of networks,
sometimes clear tree-like histories, for example, for bacterial
data and sometimes complex networks, for example, for
squamata data. A simulation study shows that Quartet-Net
has the potential to reconstruct accurate splits and weights.
Theoretically, we prove that it is consistent on 2–weakly com-
patible split systems. However, Quartet-Net is relatively slow.
It is most efficient in reconstructing the phylogenetic history
of a taxa set with size less than 100 at present.

Materials and Methods

Splits and Split Systems

A split on a taxa set X consists of two nonempty disjoint
subsets (or blocks) of X. We denote the split whose blocks
are A and B by A j B. If A [ B ¼ X, A j B is called a full split;
otherwise, it is called a partial split. A split is called trivial if one
of its blocks contains only a single taxon. Splits are the build-
ing blocks of unrooted phylogenetic trees. As shown in
figure 10, each branch of an unrooted tree defines a natural
split of the taxa set, in which taxa on different sides of the
branch compose the two blocks. In addition, if the tree is
weighted, then we associate the length of a branch to its
natural split and call it the weight of that split. In general,
for any (partial or full) split A j B, the weight of A j B, denoted
by wðA j BÞ represents the evolutionary distance between the
taxa sets A and B.

A (weighted) split system is a collection of (weighted) full
splits. We call a split system compatible if all its splits can be
fitted into an unrooted phylogenetic tree; otherwise, we call it
incompatible. Alternatively, a split system is compatible if any
two splits A1 j B1 and A2 j B2 are compatible in the sense that,
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FIG. 8. The Quartet-Net phylogenetic network of 31 squamata species.
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at least one of the sets A1 \ A2, A1 \ B2, A2 \ B1, and
B1 \ B2 is empty (Buneman 1971). A compatible split
system contains all the branching information of its corre-
sponding phylogenetic tree. On the other hand, a phyloge-
netic tree naturally defines a compatible split system. So,
there is a one-to-one correspondence between compatible
split systems and unrooted phylogenetic trees (Buneman
1971; Bandelt and Dress 1992a).

To classify splits from networks rather than from trees, a
more general class of systems called weakly compatible split
systems is employed. A split system on X is weakly compa-
tible if any three splits A1 j B1, A2 j B2, and A3 j B3 are weakly
compatible in the sense that, at least one of the
intersections A1 \ A2 \ A3, A1 \ B2 \ B3, B1 \ A2 \ B3,
and B1 \ B2 \ A3 is empty (Bandelt and Dress 1992a). It is
clear from the definition that a compatible system is also
weakly compatible. So, weakly compatible split systems are
indeed a generalization of compatible split systems.

Furthermore, to analyze the consistency of Quartet-Net,
we introduce 2-weakly compatible split systems. A split
system on X is 2-weakly compatible if any four splits
A1 j B1, A2 j B2, A3 j B3, and A4 j B4 are 2–weakly compatible
in the sense that, jA1 \ A2 \ A3 \ A4 j>1 implies that
at least one of the intersections A1 \ B2 \ B3 \ B4,
B1 \ A2 \ B3 \ B4, B1 \ B2 \ A3 \ B4, and B1\ B2\

B3\A4 is empty. In the first section of supplementary mate-
rial, Supplementary Material online, we define a more general
collection of splits called k-weakly compatible system, and
show that 2-weakly compatible systems are a proper gener-
alization of weakly compatible systems.

Triplets, Quartets, and Their Weights

A quartet (triplet) is a split of four (three) taxa into two pairs
(a pair and a singleton). Let a, b, c, and d be these four taxa,
then there are three different quartets denoted by
ab j cd, ac j bd, and ad j bc, respectively. In general, there
are overall 3

n
4

� �
different quartets for a taxa set of size

n. A split A j B is said to display another split A0 j B0 if either
A0 � A and B0 � B, or A0 � B and B0 � A. As shown in
figure 11, quartet bc j de is displayed by three full splits
bc j adef , abc j def , and abcf j de.

In Quartet-Net, we calculate quartet weights directly from
an MSA using parsimony informative sites as follows. For any
quartet ab j cd, we first collect the four sequences of taxa a, b,
c, and d from the MSA. A site is defined to support ab j cd if
the character states (e.g., nucleotides for DNA) in this site
coincide for taxon a and b, and for taxon c and d, but not
for a and c. The quartet weight wðab j cdÞ is then calculated as
the number of sites that support ab j cd. As trivial splits do
not display any quartet, we also incorporate triplet weights
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Amphisbaena schmidti
Geocalamus acutus

Diplometopon zarudnyi

Rhineura floridana

Teratoscincus keyserlingii

Gekko gecko

Pelomedusa subrufa

Chelonia mydas

Falco peregrinus

Gallus gallus

Cordylus warreni
Eumeces egregius

Sceloporus occidentalis

Iguana iguana

Shinisaurus crocodilurus

Abronia graminea
Varanus komodoensis

Caiman crocodilus
Alligator mississippiensis

Snakes

Crocodiles

Birds

Turtles

Lizards

Lizards

FIG. 9. The Split-Decomposition network of 31 squamata species.

b

c

d

e

a

ab|cde

abe|cd
a|bcde

FIG. 10. A phylogenetic tree and some splits in the corresponding com-
patible split system.
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from the MSA using parsimony informative sites to calculate
the weights of trivial full splits.

It is worth noting that we consider a quartet weight as an
estimation of the sum of the weights of all splits displaying
that quartet. This corresponds to the length of the middle
edge of the corresponding quartet tree (see also Grünewald
et al. 2007). There are a number of studies that define a
quartet weight to be the confidence in or likelihood of a
quartet topology under various models of sequence evolution
(Willson 1999; Ranwez and Gascuel 2001; Huson et al. 2004;
Sumner et al. 2008; Holland et al. 2007, 2008, 2013; Snir and
Rao 2012). In the implementation of Quartet-Net, the follow-
ing two options are provided: 1) construct a split network
directly from the sequence alignment file using the parsimony
method on informative sites to calculate triplet and quartet
weights; and 2) construct a split network from a triplet and
quartet file in a given format (see user’s manual), specifying
the triplet and quartet weights precomputed by the user.

The main purpose of the second option is to separate the
two steps of the algorithm, the computation of triplet and
quartet weights from an MSA and the computation of a split
system from this intermediate data. We simply count site
patterns to assign quartet weights. Similarly, the simple
uncorrected P distance is commonly used for Neighbor-Net
and Split Decomposition, for example, it is the default
distance of SplitsTree v4 (Huson and Bryant 2006). Other
quartet weights have been suggested. QNet (Grünewald
et al. 2007) comes with a procedure that utilizes the maxi-
mum likelihood framework of Tree Puzzle (Strimmer and von
Haeseler 1997) to compute “expected branch lengths,” quar-
tet weights that converge to the true value, if the sequences
evolve along a tree under the GTR model. More recently,
(Holland et al. 2013) used “squangles” to estimate quartet
weights under the general Markov model. These model-
based ways to compute quartet weights might be very
useful, if the true underlying split system is a tree. If not,
then the violation of the underlying compatibility assumption
of the models can be a problem. This is indicated by the
relatively high weight of the wrong splits for QNet with
“expected branch lengths” in our simulation.

To give a better understanding of the Quartet-Net algo-
rithm, we first present some recurrence formulas for calcu-
lating split weights from distances.

Computing Split Weights from Distances

Before introducing the formulas, it will be beneficial to restate
that the objective is to decompose pairwise distances into the
weights of full splits such that the summation over the
weights of all full splits displaying a pair a j b is as close as
possible but not exceeding the distance between a and
b. Thus, we always take the minimum for all possible choices
in each decomposition step.

For any taxa set X and a, b 2 X, we use ab to denote
wða j bÞ, the distance between taxa a and b. We associate
any split A j B with a weight wðA j BÞ in an agglomerative
process. The association begins with any triplet, say a j bb0.
Similar to split decomposition (Bandelt and Dress 1992a), we
have

wða j bb0Þ ¼ maxf0,
1

2
ðab + ab0 � bb0Þg: ð1Þ

For any trivial split a j B with j B j �2, we take the minimum
over all b, b0 2 B,

wða j BÞ ¼ max 0, min
b, b02B
fwða j bb0Þg

� �
: ð2Þ

As for a j bb0, a new taxon a0 can be added to either side, we
have wða j bb0Þ ¼ wðaa0 j bb0Þ+ wða j a0bb0Þ, which implies
wðaa0 j bb0Þ ¼ wða j bb0Þ � wða j a0bb0Þ. Similarly, there are
three other equations for wðaa0 j bb0Þ and we take the
minimum,

wðaa0 j bb0Þ ¼ min

wða j bb0Þ � wða j a0bb0Þ
wða0 j bb0Þ � wða0 j abb0Þ
wðb j aa0Þ � wðb j aa0b0Þ
wðb0 j aa0Þ � wðb0 j aa0bÞ

8>><
>>: : ð3Þ

For any split A j B, with jAj�2 and jBj�2, we have

wðA j BÞ ¼ min
a, a02A;b, b02B

wðaa0 j bb0Þ: ð4Þ

Equations (1)–(4) form a recurrence system to calculate
split weights from distances, which is equivalent to the
Split Decomposition algorithm (Bandelt and Dress 1992a,
1992b). The readers are referred to supplementary material,
Supplementary Material online (second section) for the proof
of the equivalence. The recurrence system can be readily
generalized from distances to triplet and quartet weights.

Computing Split Weights from Triplet and
Quartet Weights

For a taxa set X of size n, suppose that we have already
calculated all 3

n
3

� �
triplet weights and 3

n
4

� �
quartet weights

from an MSA or from distances. Then, we associate any
split A j B with a weight wðA j BÞ as follows.

First, by applying w(aa0 j bb0b00) = w(aa0 j bb0)-w(bb0 j
b00aa0Þ iteratively, we have

wðaa0 j bb0b00Þ ¼ wðaa0 j bb0Þ � wðbb0 j b00aÞ+ wðb00a j a0bÞ

�wða0b j b0b00Þ+ wðb0b00 j aa0Þ � wðaa0 j bb0b00Þ,

a

c

d

e

f

b

bc|adef
abc|def

abcf|de

FIG. 11. A phylogenetic network showing the relation “display”. Three
full splits bc j adef , abc j def and abcf j de displaying a quartet bc j de
are shown by dashed lines. For simplicity, other full and partial splits that
display bc j de are not shown.
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which implies

wðaa0 j bb0b00Þ ¼
1

2
wðaa0 j bb0Þ � wðbb0 j b00aÞ+ wðb00a j a0bÞ
�

�wða0b j b0b00Þ+ wðb0b00 j aa0Þ
�
:

Taking minimum over all possible cases, we have for any
split aa0 j B with jBj � 3,

wðaa0 j BÞ ¼ maxf0,
1

2
min

bb0b002B
fwðaa0 j bb0Þ � wðbb0 j b00aÞ

+ wðb00a j a0bÞ � wða0b j b0b00Þ+ wðb0b00 j aa0Þgg;

ð5Þ

Similar to equation (3), we have for any split A j B with
jAj ¼ 3 and jBj ¼ 3,

wðA j BÞ ¼ min min
a2A
fwðA� a j BÞ � wðA� a j B + aÞg

�
,

min
b2B
fwðA j B� bÞ � wðA + b j B� bÞg

�
:

ð6Þ

And for any split A j B with jAj�3 and jBj�3,

wðA j BÞ ¼ min
a, a0, a002A;b, b0, b002B

wðaa0a00 j b, b0b00Þ: ð7Þ

The above process generates the weights of all nontrivial
full splits, we then calculate the weights of trivial splits
a j X � a as

wða j X � aÞ ¼ min
b, c2X�a

wða j bcÞ �
X

a2A; b, c2B

A j B

( )
, ð8Þ

where
P

a2A; b, c2B A j B calculates the sum of the weights of
all nontrivial full splits that display a j bc here.

It is worth noting that taking minimum functions will
potentially cause the loss of some full splits for noisy data.
So, it is also reasonable to replace the minimum function in
equation (5) with an average function, which will produce
more full splits with a higher false-positive rate.

Equations (5)–(8) decompose triplet and quartet weights
iteratively to weights of full splits. However, a brute force
implementation is not advisable. We first present a lemma.
Its proof is the same as in (Bandelt and Dress 1992a).

Lemma 1. If a split A j B displays another split A0 j B0, then
wðA j BÞ � wðA0 j B0Þ.

By this lemma, if a partial split receives weight 0, then all
the splits displaying this split will be associated with weight
0. This observation reduces the running time of Quartet-Net.

The Quartet-Net Algorithm

Quartet-Net accepts two kinds of inputs: an MSA or a file
specifying all triplet and quartet weights. The reader is referred
to the manual at http://sysbio.cvm.msstate.edu/QuartetNet/.
For simplicity, we use 1, 2, 3, . . . , n to represent the taxa.

In the initialization step, all triplet and quartet weights are
calculated from the MSA or read from the input file. Then,
three quartets 12 j 34, 13 j 24, and 14 j 23 together with their
weights are stored in a set, say S. After that, iteratively we add
i ¼ 5, 6, . . . , n to the left and right blocks of the splits stored
in S and calculate the weights of newly generated splits from
those splits already resolved by equations (5)–(7). Noting that
the only splits which can not be generated in this way are
ki j 1 . . . k� 1 k + 1 . . . i� 1 for k ¼ 1, . . . , i� 1, we also
calculate their weights by equation (5) and add them to
S. At the end of each iteration, we remove from S the splits
with weight 0 because they cannot be further extended to
splits with positive weights. After the last iteration, only
nontrivial full splits with nonzero weights are left in S. The
weights of trivial full splits are also calculated by equation (8).
A NEXUS file is created to store them and “SplitsTree4”
(Huson and Bryant 2006) can be used to visualize the
network.

As we can see, only the splits of length 5 and the full splits
over f1, 2, . . . , ig with nonzero weights are stored in
iteration i. For every i, the set of all full splits with nonzero
weight is a 2–weakly compatible split system. Using our con-
sistency result and applying a similar argument as in (Bandelt
and Dress 1992a), it can be shown that the number of splits in
a 2–weakly compatible split system on n taxa can not

exceed 3
n
4

� �
+ n. Therefore, the Quartet-Net algorithm is -

polynomial in space and time. Indeed the space
complexity of Quartet-Net is Oðn5Þ and the time complexity
is Oðn8Þ.

Consistency and Implementation

Consistency is a very important criterion to evaluate a recon-
struction algorithm. We present the consistency of Quartet-
Net in the following theorem, the proof of which can be
found in the third section of supplementary material,
Supplementary Material online.

Theorem 1. If the Quartet-Net algorithm is applied to triplet
and quartet weights that are induced by a weighted 2–weakly
compatible split system S on X, then it will output the splits in
S with correct weights.

As the class of 2–weakly compatible split systems strictly
contains compatible and weakly compatible split systems as
special cases, Quartet-Net has the potential to accurately re-
construct a larger set of weighted split systems than previous
algorithms such as Split-Decomposition (Bandelt and Dress
1992a, 1992b), Neighbor-Net (Bryant and Moulton 2004), and
QNet (Grünewald et al. 2007). Quartet-Net has been imple-
mented in C++ and is available for download for both
Windows and Linux at http://sysbio.cvm.msstate.edu/
QuartetNet/.

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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